
DRAFT
ASP-III for ESAMS Range Tracking • 7.2

Update: 2/3/97 2.28-1 ESAMS v.2.6.2

DRAFT

2.28 DETAILED RESULTS FOR RANGE TRACK

No significant errors were found in the Range Track Functional Element for ESAMS 2.6.2.
The overall code quality is good, with only a few corrections recommended for the internal
documentation. External documentation for ESAMS 2.5 is adequate-for this FE as
implemented in ESAMS 2.6.2.

The table listed below summarizes the desk-checking and software testing verification
activities for each subroutine in the Range Track Functional Element. The two results
columns contain checks if no discrepancies were found.

2.28.1 Overview

In pulsed systems, range tracking is the process of continuously measuring the time delay
between transmission of an RF pulse and the reception of the pulse echo from the target.
The range measurement is the most precise position-coordinate measurement of the radar
system. In addition, range tracking provides an important means of multiple target
discrimination by eliminating from the receiver train signal returns other than those of the
intended target. This is accomplished by positioning the range gate to correspond to a time
period when the pulse return is expected and closed the remainder of the time. The range
of the target is tracked in a closed-loop fashion by generating range gate position error
measurements. These range errors are produced by dividing the gate into early and late
segments, then measuring and comparing the amount of pulse return energy that falls
within each gate. This error term is then used to reposition the range gate so that it is
centered on the target.

ESAMS 2.6.2 implementation of Range Track is accomplished with four primary
subroutines and two support subroutines. Subroutines PRTION, INTGRT, RNGDSC and
SVORNG are used exclusively for range tracking operations. Subroutines HEAPIN and
HEAPSR are support routines which sort arrays. The six subroutines used for this FE are
described in Table 2.28-2.

TABLE 2.28-1. Verification Results Summary.

Design Element Code Location
Desk

Check
Result

Test Case
ID

Test Case
Result

28-1 Pulse Edge Positions PRTION √ 28-5,6 √
28-2 Early/Late Gate Signal Amplitude INTGRT √ 28-7 √
28-3 Range Gate Error RNGDSC √ 28-1,2, 3,4 √
28-4 Range Gate Servo Dynamics SVORNG √ 28-4 √

DRAFT
Range Tracking • 7.2 ASP-III for ESAMS

ESAMS v.2.6.2 2.28-2 Update: 2/3/97

DRAFT

2.28.2 Verification Design Elements

Design elements defined for the Range Track FE are listed in Table 2.28-3; they are fully
described in Section 2.28.2 of ASP II. A design element is an algorithm that represents a
specific component of the FE design.

2.28.3 Desk Checking Activities and Results

The code implementing this FE was manually examined using the procedures described in
Section 1.1 of this report. No code discrepancies were discovered.

Except as noted in Table 2.28-4 below, overall code quality and internal documentation
were evaluated as good. Subroutine I/O and logical flow were found to match the ASP II
descriptions.

TABLE 2.28-2. Range Track Subroutine Descriptions.

Module Name Description

RNGDSC Computes the range track error as determined by a split-gate tracking algorithm. The
early and late gates are weighted by the respective weighing factors, and the energy
content difference between the early and late gates is used to compute a range error
signal.

PRTION Partitions the range gate into a series of intervals defined by the edge points of the
pulses within the gate the edges of the range gate itself.

INTGRT Calculates the signal level in the early and late gate portions of the range gate one
interval at a time.

SVORNG Computes the range gate servo response from current and previous input and output
commands.

HEAPSR Sorts an array into a heap.

HEAPIN Adds a new element to any array and rearranges it into a heap.

TABLE 2.28-3. Range Track Design Elements.

Subroutine Design Element Description

PRTION 28-1 Pulse Edge Positions Calculation of pulse edge positions in relation to left and
right edges of the gate.

INTGRT 28-2 Early/Late Gate
Signal Amplitude

Sums the signals by interval to determine the signal
strength within the early and late portions of the range gate.

RNGDSC 28-3 Range Gate Error Calculation of range error using difference-to-sum ratio of
early and late gate signals.

SVORNG 28-4 Range Gate Servo
Dynamics

Computes range gate servo response to range error derived
input command.

DRAFT
ASP-III for ESAMS Range Tracking • 7.2

Update: 2/3/97 2.28-3 ESAMS v.2.6.2

DRAFT

2.28.4 Software Test Cases and Results

All subroutines implementing the range tracking functional element were tested by off-line
and integrated code. Off-line testing was performed using copies of ESAMS code run on
a PC. For integrated testing, the entire ESAMS model was run in debug mode. Unless
otherwise indicated, the standard ESAMS data files for the systems under consideration
were used as input for all test cases.

TABLE 2.28-4. Code Quality and Internal Documentation Results.

Subroutine Code Quality Internal Documentation

SVORNG OK 1. The variable DELTAT is in the argument list but it is not
used. 2. The subroutine contains no prologue

TABLE 2.28-5. Range Tracking Software Test Cases.

Test Case ID Test Case Description

28-1 Objective: Check range gate error computation in both directions.

Procedure:

1. Write an off-line driver to run subroutine RNGDSC with the following data set.
2. Stop in subroutine RNGDSC
3. Stop on line 128
4. Examine variable RERROR
5. Compare to pre-calculated values

Target range = 11000.1
Target pulse width = 2.9E-05
Range gate center = 11000.0
Range gate width = 7.0E-05

Verify: Alarm values match independently calculated values.

Result: OK

28-2 Objective: Check track-lost logic when target does not fall within the range gate.

Procedure:

1. Write an off-line driver to run subroutine RNGDSC with the following data set.
2. Stop in subroutine RNGDSC
3. Stop on line 81
4. Step to next executable line of code (should be line 119) to check that branching

executes correctly
5. Stop on line 128
6. Examine variables RERROR, RGATE, RTSI and CSTTIM for reasonableness
7. Go to 4 (loop until CSTTIM exceeds maximum coast time)

Target range = 23000.0
Target pulse width = 2.9E-05
Target velocity = -1000.0
Range gate center = 22000.0
Range gate width = 7.0E-05

Verify:

1. Next line executed after line 81 is 119.
2. ALARM values are reasonable.
Result: OK

DRAFT
Range Tracking • 7.2 ASP-III for ESAMS

ESAMS v.2.6.2 2.28-4 Update: 2/3/97

DRAFT

28-3 Objective: Check track-lost logic when target is initially outside of the gate.

Procedure:

1. Write an off-line driver to run subroutine RNGDSC with the following data set.
2. Stop in subroutine RNGDSC.
3. Stop on line 128.
4. Examine variables RERROR, RGATE and RTSI for reasonableness.
5. Go to 4. (loop over 50 iterations)

Target range = 21000.0
Target pulse width = 2.9E-05
Target velocity = 1000.0
Range gate center = 22000.0
Range gate width = 7.0E-05

Verify:

1. ALARM values are reasonable.
Result: OK

28-4 Objective: Check range gate motion in both directions.

Procedure:

1. Write an off-line driver to run subroutine RNGDSC with the following data sets.
2. Stop in subroutine RNGDSC.
3. Stop on line 128.
4. Examine variables RERROR, RGATE and RTSI for reasonableness.
5. Go to 2. (loop over 10 iterations)
6. Repeat for each of the three cases.
Case 1:

Target range = 21000.0
Target pulse width = 2.9E-05
Target velocity = 1000.0
Range gate center = 22000.0
Range gate width = 7.0E-05

Case 2:
Target range = 21000.0
Target pulse width = 2.9E-05
Target velocity = 1000.0
Range gate center = 22000.0
Range gate width = 7.0E-05

Case 3:
Target range = 21000.0
Target pulse width = 2.9E-05
Target velocity = 1000.0
Range gate center = 22000.0
Range gate width = 7.0E-05

Verify:

1. ALARM values are reasonable.
Result: OK

TABLE 2.28-5. Range Tracking Software Test Cases. (Contd.)

Test Case ID Test Case Description

DRAFT
ASP-III for ESAMS Range Tracking • 7.2

Update: 2/3/97 2.28-5 ESAMS v.2.6.2

DRAFT

28-5 Objective: Check range gate boundary calculations.

Procedure:

1. Set target and range gate data:
2. Stop in subroutine PRTION.
3. Stop on line 78.
4. Examine variables TRGC, TRGL and TRGR.
5. Compare with pre-calculated values.

Target range = 23003.0
Target pulse width = 2.9E-05
Pulse magnitude = 1.0
Range gate center = 23000.0
Range gate width = 7.0E-05

Verify: ALARM values match independently calculated values.

Result: OK

28-6 Objective: Check signal pulse end-point computations for three overlapping target
signals.

Procedure:

1. Set target and range gate data:
2. Stop in subroutine PRTION.
3. Stop on line 111.
4. Examine variable array PTAR.
5. Compare with pre-calculated values (check for correct array location).
6. Stop on line 165.
7. Examine variable array TRGEP.
8. Compare with pre-calculated values (check for correct order).
Signal 1:

Target range = 23003.0
Target pulse width = 2.9E-05
Pulse magnitude = 1.0

Signal 2:
Target range = 23001.0
Target pulse width = 2.0E-05
Pulse magnitude = 1.0

Signal 3:
Target range = 23002.0
Target pulse width = 2.0E-05
Pulse magnitude = 1.0
Range gate center = 23000.0
Range gate width = 7.0E-05

Verify: ALARM values match independently calculated values.

Result: OK

TABLE 2.28-5. Range Tracking Software Test Cases. (Contd.)

Test Case ID Test Case Description

DRAFT
Range Tracking • 7.2 ASP-III for ESAMS

ESAMS v.2.6.2 2.28-6 Update: 2/3/97

DRAFT

2.28.5 Conclusions and Recommendations

2.28.5.1 Code Discrepancies

There were no code discrepancies uncovered in Range Track FE for ESAMS 2.6.2.

2.28.5.2 Code Quality and Internal Documentation

The quality of the code for the Range Track FE in ESAMS 2.6.2 is generally good. Internal
documentation is generally good except for subroutine SVORNG which has an error in the
argument list as well as no prologue, i.e., abstract, purpose, etc.

2.28.5.3 External Documentation

There is no external documentation for ESAMS 2.6.2. Therefore, the external
documentation for ESAMS 2.5 was used. Other than choosing which missile/radar to use,
there is no direct user interface to range track FE, therefore, it is not discussed in the User’s
Manual [3]. The Analyst’s Manual [4] contains an adequate, although upper level
explanation of range tracking methodology.

28-7 Objective: Check signal envelope and integration calculations.

Procedure:

1. Set target and range gate data:
2. Stop in subroutine PRTION.
3. Stop on line 109.
4. Examine variable arrays ASGM2 and DLEP.
5. Compare with pre-calculated values.
6. Stop on line 127.
7. Examine variable IEPC.
8. Compare with pre-calculated index value.
9. Stop on line 173.
10. Examine EARLY and LATE.
11. Compare with pre-calculated values.
Signal 1:

Target range = 23003.0
Target pulse width = 2.9E-05
Pulse magnitude = 1.0

Signal 2:
Target range = 23001.0
Target pulse width = 2.0E-05
Pulse magnitude = 1.0

Signal 3:
Target range = 23002.0
Target pulse width = 2.0E-05
Pulse magnitude = 1.0
Range gate center = 23000.0
Range gate width = 7.0E-05

Verify: ALARM values match independently calculated values.

Result: OK

TABLE 2.28-5. Range Tracking Software Test Cases. (Contd.)

Test Case ID Test Case Description

